TASK channels contribute to the K+-dominated leak current regulating respiratory rhythm generation in vitro.
نویسندگان
چکیده
Leak channels regulate neuronal activity and excitability. Determining which leak channels exist in neurons and how they control electrophysiological behavior is fundamental. Here we investigated TASK channels, members of the two-pore domain K(+) channel family, as a component of the K(+)-dominated leak conductance that controls and modulates rhythm generation at cellular and network levels in the mammalian pre-Bötzinger complex (pre-BötC), an excitatory network of neurons in the medulla critically involved in respiratory rhythmogenesis. By voltage-clamp analyses of pre-BötC neuronal current-voltage (I-V) relations in neonatal rat medullary slices in vitro, we demonstrated that pre-BötC inspiratory neurons have a weakly outward-rectifying total leak conductance with reversal potential that was depolarized by approximately 4 mV from the K(+) equilibrium potential, indicating that background K(+) channels are dominant contributors to leak. This K(+) channel component had I-V relations described by constant field theory, and the conductance was reduced by acid and was augmented by the volatile anesthetic halothane, which are all hallmarks of TASK. We established by single-cell RT-PCR that pre-BötC inspiratory neurons express TASK-1 and in some cases also TASK-3 mRNA. Furthermore, acid depolarized and augmented bursting frequency of pre-BötC inspiratory neurons with intrinsic bursting properties. Microinfusion of acidified solutions into the rhythmically active pre-BötC network increased network bursting frequency, halothane decreased bursting frequency, and acid reversed the depressant effects of halothane, consistent with modulation of network activity by TASK channels. We conclude that TASK-like channels play a major functional role in chemosensory modulation of respiratory rhythm generation in the pre-Bötzinger complex in vitro.
منابع مشابه
Persistent Na+ and K+-dominated leak currents contribute to respiratory rhythm generation in the pre-Bötzinger complex in vitro.
A central problem in analyzing neural circuit function is establishing how intrinsic neuronal conductances contribute to the generation of network activity. We used real-time calcium activity imaging combined with whole-cell patch-clamp recording to analyze contributions of subthreshold conductances in the excitatory rhythm-generating network in the respiratory pre-Bötzinger complex (pre-BötC) ...
متن کاملTransient Receptor Potential Channels TRPM4 and TRPC3 Critically Contribute to Respiratory Motor Pattern Formation but not Rhythmogenesis in Rodent Brainstem Circuits
Transient receptor potential channel, TRPM4, the putative molecular substrate for Ca2+-activated nonselective cation current (ICAN), is hypothesized to generate bursting activity of pre-Bötzinger complex (pre-BötC) inspiratory neurons and critically contribute to respiratory rhythmogenesis. Another TRP channel, TRPC3, which mediates Na+/Ca2+ fluxes, may be involved in regulating Ca2+-related si...
متن کاملO3: Pharmacological Modulation of Thalamic KCNQ-Potassium Channels: Insight from Knock-out Mice
The channels belonging to the KCNQ gene family consist of 5 different subtypes, which assemble as pentameric channels. The KCNQ2-5 subunits are highly expressed in the ventrobasal thalamus (VB) where they function primarily as KCNQ2/3 heteromers. They underlie an outward potassium (K+)-current, called M-current (IM), which provides a hyperpolarizing drive, thus regulating neuronal excitability....
متن کاملA Sodium Leak Current Regulates Pacemaker Activity of Adult Central Pattern Generator Neurons in Lymnaea Stagnalis
The resting membrane potential of the pacemaker neurons is one of the essential mechanisms underlying rhythm generation. In this study, we described the biophysical properties of an uncharacterized channel (U-type channel) and investigated the role of the channel in the rhythmic activity of a respiratory pacemaker neuron and the respiratory behaviour in adult freshwater snail Lymnaea stagnalis....
متن کاملStriatal cholinergic interneurons express a receptor-insensitive homomeric TASK-3-like background K+ current.
Large aspiny cholinergic interneurons provide the sole source of striatal acetylcholine, a neurotransmitter essential for normal basal ganglia function. Cholinergic interneurons engage in multiple firing patterns that depend on interactions among various voltage-dependent ion channels active at different membrane potentials. Leak conductances, particularly leak K(+) channels, are of primary imp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 30 12 شماره
صفحات -
تاریخ انتشار 2010